

Figure 8 shows a sketch of the curve *C* with equation $y = x^x$, x > 0

(a) Find, by firstly taking logarithms, the x coordinate of the turning point of C.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(5)

(2)

(2)

The point $P(\alpha, 2)$ lies on C.

(b) Show that $1.5 < \alpha < 1.6$

A possible iteration formula that could be used in an attempt to find α is

$$x_{n+1} = 2x_n^{1-x_n}$$

Using this formula with $x_1 = 1.5$

- (c) find x_4 to 3 decimal places,
- (d) describe the long-term behaviour of x_n

b) y = x* x=1.5 => y=1.515 = 1.84 $x = 1.6 = 3 = 1.6^{1.6} = 2.12$ $P(\alpha, 2) = 1.8422<2.12$, we also Know that C is a Continuous cune, hence 1.5 < a < 1.6 (1) c) $\chi_{n+1} = \partial \chi_n^{1-\chi_n}$, $\chi_1 = 1.5$ $\chi_2 = \lambda \cdot \chi_1^{1-\chi_1} = \lambda \cdot (1.5)^{1-1.5} = 1.63299..$ 0 $\chi_{3} = \lambda \cdot \chi_{2}^{1-\chi_{2}} = 1.46626...$ $\chi_{\mu} = 2 \cdot \chi_{3}^{1-\chi_{3}} = 1.6731... = 7 \chi_{\mu} = 1.673$ \bigcirc d) n->00, what happens to In? • In fluctuates between 1 and 2 1,2,1,2,... · Xn will be periodic with period 2 ()

PhysicsAndMathsTutor.com

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 6 8 7 3 1 A 0 7 5 2

Figure 1 shows a sketch of the curve C with equation

$$y = \frac{4x^2 + x}{2\sqrt{x}} - 4\ln x$$
 $x > 0$

(a) Show that

3.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{12x^2 + x - 16\sqrt{x}}{4x\sqrt{x}}$$

(4)

a)
$$y = \frac{hx^2 + x}{2\sqrt{x}} - \frac{h\ln x}{dx}$$
, find $\frac{dy}{dx}$. Log Differentiation: $:\frac{d}{dx}(\ln x) = \frac{1}{x}$
 $\cdot \frac{d}{dx}(\ln x) = h \cdot \frac{1}{x} = \frac{h}{x}$
 $\cdot \frac{d}{dx}(\ln x) = h \cdot \frac{1}{x} = \frac{h}{x}$
 $\cdot \frac{d}{dx}(\ln x) = h \cdot \frac{1}{x} = \frac{h}{x}$
 $\cdot \frac{d}{dx}(\ln x) = h \cdot \frac{1}{x} = \frac{h}{x}$
 $\cdot \frac{d}{dx}(\ln x) = \frac{f(x)}{3(x)}$
 $\cdot \frac{d}{dx}(\ln x) = \frac{f(x)}{x}$
 $\cdot \frac{d}{dx}(\ln x) = \frac{f(x)}{x}$
 $\cdot \frac{d}{dx}(\ln x) = \frac{1}{x}$
 $\cdot \frac{d}{dx}$

The point P, shown in Figure 1, is the minimum turning point on C.

(b) Show that the *x* coordinate of *P* is a solution of

$$x = \left(\frac{4}{3} - \frac{\sqrt{x}}{12}\right)^{\frac{2}{3}}$$

b) from part a: $\frac{dy}{dx} = \frac{12x^2 + x - 16\sqrt{x}}{4x\sqrt{x}}$

Our	first	Step	is	to set	<u>dy</u> :	=0. =)	$\frac{12x^2+x-16\sqrt{x}}{2}$	= 0		
					dx	•	HxII			
						=)	$12x^2 + x - 16\sqrt{x}$	= 0	<u>.</u> 52	
						=)	12x ^{3/2} + /x - 16	= 0	· 🕕	
						=)	$12x^{3/2} = 16 - \sqrt{3}$	x .	÷ 120	
						=)	$x^{3/2} = 16$	۲۲ آ	, , , , , , , , , , , , , , , , , , , ,	
							19	12		
						=>	$x^{3/2} = \frac{1}{10} \int$	lz		
							3 1	12		
						=)	$x = (\frac{\mu}{2}) \sqrt{x}$	() a	s required.	
							$\left(\frac{3}{3}\right)$	7	•	

(c) Use the iteration formula

$$x_{n+1} = \left(\frac{4}{3} - \frac{\sqrt{x_n}}{12}\right)^{\frac{2}{3}}$$
 with $x_1 = 2$

to find (i) the value of x_2 to 5 decimal places,

(ii) the x coordinate of P to 5 decimal places.

(3)

(3)

c)
i)
$$\chi_{1} = 2$$
 and $\chi_{n+1} = \left(\frac{\mu}{3} - \frac{\sqrt{\chi_{n}}}{12}\right)^{2/3} = \left(\frac{\mu}{3} - \frac{\sqrt{\chi_{1}}}{12}\right)^{2/3} = \left(\frac{\mu}{3} - \frac{\sqrt{\chi_{2}}}{12}\right)^{2/3}$
Sub this in!
 $\chi_{2} = |.|38935...$
 $\chi_{2} = |.|3894$ (5 d.p) (1)
ii) $\chi_{2} = |.15650$ (1)

4.

$f(x) = \ln(2x - 5) + 2x^2 - 30, \quad x > 2.5$

(2)

(2)

(a) Show that f(x) = 0 has a root α in the interval [3.5, 4]

A student takes 4 as the first approximation to α .

Given f(4) = 3.099 and f'(4) = 16.67 to 4 significant figures,

- (b) apply the Newton-Raphson procedure once to obtain a second approximation for α , giving your answer to 3 significant figures.
- (c) Show that α is the only root of f(x) = 0

- 5. The equation $2x^3 + x^2 1 = 0$ has exactly one real root.
 - (a) Show that, for this equation, the Newton-Raphson formula can be written

$$x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n}$$
(3)

Using the formula given in part (a) with $x_1 = 1$

(b) find the values of x_2 and x_3

(2)

(c) Explain why, for this question, the Newton-Raphson method cannot be used with $x_1 = 0$

(1) Venton-Roughsen formula: 20n+1 = 20n Q $\lambda x^3 + \chi^2$ $6x^2$ 2 + 2x \mathcal{X} 3+ Xn+1 = Xn d $6x^2$ 27cn 3 + <u>7</u> loca -_ $62c^{2}n^{+}$ 5 X <u>6</u>22 7 \mathcal{X} dr 20 2xn 6sc n + $6x^{3}$ 3 2 2 ł T X $6x^{2}n +$ Joch 7Cn+1 bocn +docn

Using the formula given in part (a) with $x_1 = 1$ PhysicsAndMathsTutor.com

(b) find the values of x_2 and x_3

(2) $4\chi^3$ χ_{n+1} b ς $62c^{2}n^{+}$ dra X -7 ł 6 7 Xz Ξ 2 6 +(c) Explain why, for this question, the Newton-Raphson method cannot be used with $x_1 = 0$ (1) N C C 7 2 7cn \mathbf{x}_{n+1} 1001 JC a \mathcal{X}_{n+1} XA is undefined tumpy point Xn χ_{h} at Q f'(xn 2 + 22 ax ()c) 62 ł 20 Γ⁄⁄ f'(0) $6(0)^{2}$ or turner Ξ ł 2(0)-DoiN X Far the megnently tangent will be herizontal not meet the _, wiM not locate the 1C-aris 50 root and

6. The curve with equation $y = 2 \ln(8 - x)$ meets the line y = x at a single point, $x = \alpha$.

Figure 2 shows the graph of $y = 2\ln(8 - x)$ and the graph of y = x.

A student uses the iteration formula

$$x_{n+1} = 2\ln(8 - x_n), \quad n \in \mathbb{N}$$

in an attempt to find an approximation for α .

Using the graph and starting with $x_1 = 4$

(b) determine whether or not this iteration formula can be used to find an approximation for α , justifying your answer.

(2)

 $2\ln(s-x) = x$ f(3) x f(u) have $2\ln(s-x) - x = 0$ a different sign $1 - 2\ln(s-x) - x$ Q) $f(x) = 2\ln(8-x) - x$ f(3) = 2ln(5) - 3 = 0.22 (positive) f(4) = 2ln(4) - 4 = -1.13 (Negative) frx) changes sign between 3 d 4, the function is continuous (3,4) => Root

Question continued

b) (an be used to find an approximation for a because the cobured spirals inwards for cobured diagram (see figure 2 for first Mark for part b) (Total for Question is 4 marks)